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The analysis of experimental data for singlet transitions (AE,) of even polyenes 
(I), cations (II) and anions (III) of odd polyenes show that for infinite chains 
AE~(I)/AEo~(II) =AE~(I)/AEoo(III)=2:1. It is shown that the energy gap is 
equal for the three systems. In cases (II) and (III) there is a level (NBMO) in the 
gap which is vacant in (II) and occupied in (III). That is why the first optical 
transition in (II) and (III) depends on the semiwidth of the gap. 
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1. Introduction 

Even polyenes (I) and the cations of odd polyenes (II), the allylcarbenium cations, 

I II III 

differ considerably in their spectral properties, not only for low values ofn [1], but 
also in the asymptotic case when n -~ oo (see Fig. 1 and Table 1). The energy gap 
AE~(I) for even unsubstituted polyenes, equal to the energy of the longest- 
wavelength optical transition AE~o ' opt(I), is evaluated at 2.25 eV [6]. A similar 
value is obtained for the e-, o-methyl substituted polyenes (see Table 1). In the 
paper of Sorensen, where spectra of allylcarbenium cations [3] are treated, the 
following dependence is given for the wavelengths of the longest-wavelength 
transition: 2(•) = 3305 + 655 n (which is analogous to Broocker's rule for 
polymethyncyanines [7-9]). According to the above dependence, when n ~ oo, 
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(1) HsC-CH=CH-(CH=CH)n -CHs 

(2) (CHs)2C=CH-(CH=CH)n-C(CHs)2 
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Fig. l. Dependence of the energy 
of the longest-wavelength singlet 
transitions for even polyenes and 
cation of odd polyenes on the 
number of vinylene groups 

2-* o9, i.e. the energy of the longest-wavelength transition AEoo, opt(II ) ~ 0 
respectively the energy gap AEo~(II ) --, 0. However, the statistical treatment of the 
experimental data (see Table 1) gives a finite value for AEoo ' opt(II) ~ 1 eV. Hence, 
the ratio of the energies of the longest-wavelength transition for the two classes of 
polyenes is: 

AE,opt(I): AE~, opt(II) ~ 2:1 (1) 

Having in mind that the effects of the solvent and of the substituents were not taken 
into account when the asymptotic behaviour of AE~(I) and AE~, opt(H) was being 
determined, the precising of ratio (1) would be unrealistic. 

There are no experimental data for the optical transitions of the anions of odd 
polyenes (III). However, there are some data for the anions of odd c~-, ~o-diphenyl- 
polyenes [4]. Their extrapolation (see Table 1) leads to values of AE~,opt(llI ) 
which are also of the order of 1 eV, as in case (II). In view of the fact that for large 
values of n the boundary effects may be neglected, we can consider that Eq. (1) is 
satisfied by the anions of odd polyenes too. 

The existence of the energy gap in the spectrum of one-particle excitations in even 
polyenes, which coincides with the energy of the longest-wavelength optical 
transition, is determined by the geometry factor (the presence of alternation of the 
bond lengths) and the electron correlation [10 20]. 

n I ~ II b III ~ 

0 6.76 4.07 2.47 
1 5.46 3.13 2.32 
2 4.71 2.67 2.18 
3 4.14 2.31 2.07 
4 3.80 2.04 1.96 

5 3.52 1.83 - 

2.21 d 1.10 d 1.21 d 

Table 1. Experimental values of the longest-wavelength singlet 
transitions (in eV) for even I, cations of odd polyenes II and 
anions of odd ~-, co-diphenyl polyenes III 

I: H3C-CH=CH-(CH=CH)n-CH3, cf. Ref. [2]. 

b II: (CH~)2C=CH-(CH=CH),-~(CH3)2, cf. Ref. [3]. 

c III: C6H5-CgI-(CH--CH) -C6H5, cf. Ref. [41. 

d Values calculated by means of Pade approximation, cf. Ref. [5]. 
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2. One-Electron Approximation 

The purpose of the present paper is to determine the origin of the gap of the ions 
of odd polyenes, resp. to find a physical explanation of ratio (1). 

In Htickel's approximation, the MO energies of a polyene with N atomic orbitals 
(AO), considering ideal geometry (equality of all resonance integrals), are given by 
the formula [21] : 

7C 
e k =  e + 2 f l C O S N ~ l k ,  k =  1 , 2 , . . . , N .  (2) 

For odd polyenes (N = 2n + 1), the (n + 1) st MO is nonbonding. The energy of 
the longest-wavelength transition for (II) and (III) is identical and equal to [4]" 

AEN, opt( I I  ) = e n +  1 - -  e n = zaEN, opt(III) 
D 

= e n +  2 - -  e n +  1 = - - 2 p  c o S - 2 n  + 2  
, o (3)  

The energy of the first transition for an isoelectronic even polyene (N = 2n) is 
equal to : 

AEN, opt(I) = e,,+l -- e n = --4fi sin 

When n ~ o% the ratio of (4) to (3) 

7C 
sin - -  

4n + 2 
2 lira,+ 0o 

n g  
COS - -  

2 n + 2  

7~ n--, cc 

4 n + 2  
, 0 (4) 

, 1 (5) 

Ratio (5) disagrees with (1) not only formally; according to (3) and (4): AE~(I) = 
AE~,opt(I ) -+ AEoo,opt(II ) ~ AE~,opt(III)-~ 0, while the experiment gives finite 
values for the energies of the optical transitions. There is bond order alternation 
both for even polyenes [-21] and for ions of odd polyenes. The expression for the 
bond order of an odd polyene with N AO, obtained with all resonance integrals 
equal, is of the type (identical for cations and anions): 

2 [ _sinA n sin (2# + 1)A] 
Pu, u+I - N +  1 [_2sinB cos~(2#  + 1) _ sin (2# + 1 ~ 3  

N - l n  n 
A N +  14 B 2 N + 2  

(6) 

From the C2v symmetry of all-trans configuration of the polymethyne chain and 
expression (6), it follows that the cations of odd polyenes can be divided in two 
classes: 



194 N .  T y u t y u l k o v  et al. 

4/) + 1 -polyenes (p = 1, 2, 3 . . . .  ) 

+/(CH=CH)p 
HC 

\ 
(CH=CH)p 

4p + 3 -polyenes p = 0, l, 2 . . . .  ) 

CH-(CH=CH)p 
/ 

HC 
\ 

CH-(CH=CH)p 

Completely analogous is the classification that can be made for the anions of odd 
polyenes, in which the alternation of  bond orders is the same. This classification of  
the ions of  odd polyenes is not formal. In the case of 4p + 1 polyenes (e.g. penta- 
methyn cation) there exists an ionic Kekule structure with the same C2~ symmetry 

+ 

as the molecule. In the case of4p + 3 polyenes (e.g. heptamethyn cation), none of  
Kekule's ionic formulae possesses Czv symmetry, as can be seen from the following 
examples : 

+ + 

Quite similar is the situation for the linear polyacenes with an even and odd number 
of  benzene rings, where a considerable difference exists in the stability of the 
Har t ree-Fock solutions for finite values of n, as is shown in the work of Paldus and 
Ci~ek [22]. 

The MO of a polymethyn chain with 2n + 1 A O  and C2~ symmetry 

C--C . . . . .  C = C - - - - C  . . . . .  C - - C - - C  . . . . .  C=C 
1 2 2 l - 1  21 2 l + 1  n n + l  n' 2 '  1' 

belong to the irreducible representations B 1 and A z and are of the type: 

t ] J k ( B 1 )  = Cn+l(pn+l -[- ~ Cku(gO # -[- gO') 
1 

n 

%(A2) = Z 
1 

The secular equations for both classes of MO are: 

C2l(O~ -- ek) + flaC2l_l + flsC2l+l = 0 

c21+1(~ - ek) + flsC21 + fide21+2 = 0 
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By means of the method of  finite differences, from the above equations for MO 
energies (B 1 and A2), one can easily obtain: 

ek = + + + c o s  

4re (7) 
k ok - 2n + 2 

In order to determine the parameter k, from the secular equations, the boundary 
conditions and (7), we obtain the transcendental equation: fl~ sin i k  = fie sinjk 
(i a n d j  are integers), which is identical to the equation derived by Lennard-Jones 
for even polyenes [23]. It is easily solved only in the case of  4p + 3 polyenes for 
MO with A 2 symmetry, where (4p + 3 = 2n + 1): 

k = l , 2  . . . . .  p. 

In this case Eq. (7) coincides with the formula given by Rebane [24] for odd 
polyenes of  the following structure: 

2 

. . . . . .  ~ " 2 p + l  
1 3 

For 4p + 3 polyenes the nonbonding MO also belongs to the irreducible rep- 
resentation A 2 . For  this MO the orbital coefficients with even indices c2~ = 0 and 
those with odd indices : 

, / , t =  C2l+l = ( - - t ) l / ~  t2P -+~ Z 1 fla/fl~ (s) 

From (8) and the condition for alternancy of  the system, we obtain for the electron 
charge of the atoms the expression : 

t 2l t 2 -  1 

q2l = 1 q2I+l = 1 ~- 2 t 2 p + 2 -  1 ( / =  0,1,  2,. . . ,p )  (9) 

The minus sign related to cations and the plus sign to the anions. 

In the case of4p + 1 polyenes the NBMO is with B 1 symmetry. This follows from 
the development of the secular determinant, and leads to a polynomial of the type 
(0~ - -  e ) . P 2 p [ ( c r  - -  e)2], where P2p[(~ - e) 2] is a polynomial containing only even 
powers of  (~ - e). 

The orbital coefficients of the NBMO are c2z = 0, and : 

c21+1 = 1 K- ( - t )  ~ X/ 12p+ 2 q- t 2  p __ 2 

The charges respectively: 

t 2 - 1 
qe t  = 1 q2/+1 = 1 -T-t 2l 

tzp+2 + /2p _ 2 

(10 )  

(l = 0, 1, 2 , . . . , p )  (11) 
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Depending on whether the alternation in the bond lengths is taken into account or 
not, the charge distribution in the ions of the odd polyenes differs considerably. 
The treatment of ideal geometry (/~s = /?d) gives for the electron charges of atoms 
with even indices [21]" q2z = 1, and those of atoms with odd indices (for a poly- 
methyn chain with 2n + 1 AO)" 

1 
q2/+l = 1 T - -  

n 4 - 1  

When the alternation is taken into account, the values of the electron charges alter 
monotonously with the change of 1 for bott-eclasses of polyenes. In the asymptotic 
case (p -~ oo) for 4p + 3 polyenes 

t 2 - -  1 
ql = 1, q 2 p + l  = 1 -T- t--~ 

and for 4p + 1 polyenes 

t 2 - -  1 
q l  = 1, q 2 p + l  = 1 T- t2 4- 1 

(12) 

(13) 

For large values of p, the boundary effects can be neglected, hence co k in (7) for 
both types of polyenes alters in the interval 

O ~ O k  ~ Z .  

Consequently, the energy gap for both cases is identical and equal t o  

A E ~ ( I )  = AEoo(II  ) = A E  ( I I I )  = 2lfl ~ - / 3 , 1  = A.eom 

Since the odd polyenes also possess a NBMO, the energy of the longest-wavelength 
transition for ions of odd polyenes will be equal to the halfwidth of the gap 

AE~o,ovt(II) = AEoo, opt(III) = 1 / 2 / l E o n , o p t ( I )  = 1 /2Ageom = Ifla - -  f lsl  ( 1 4 )  

It is exactly twice less than the energy of the longest-wavelength transition for an 
even polyene [10], which is equal to the energy gap : 

AE~o, opt(I) -- AE~(I) = 21/3 ~ - fl~l = A0oom (15) 

where the nonbonding MO is absent. From (14) and (15), it follows that (1) is 
satisfied: 

AE~'~ = 2/1 (16) 
AE oo, opt(II) 

The geometry components of the energy gap satisfy Eq. (1) on condition that bond 
order alternation is equal for even and ions of odd polyenes. Equal or similar 
alternation for even and ions of odd polyenes is physically acceptable in the asymp- 
totic case, taking into account not only the expressions for bond orders obtained by 
Htickel's method, but also the numerical values obtained by means of the PPP 
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method [25, 26]. This can be seen from the molecular diagrams of  the cations of  
nonamethyn: 

and octatetraene 

-5 \ (?st- O~ (3.~60 " "~_gq ~5 (5 "005. 

~c~ O~ O~ 
(5. c)z" JqO ~.%'5 .~176176 

The calculations have been done with the same parametrization as in paper [27]. 
The above molecular diagrams have been obtained without taking into account the 
configuration interaction. The molecular diagrams of  the cations of heptamethyn : 

and hexatriene 

have been obtained (using the same parametrization) by means of the SCF-CI 
method, taking into account the electron correlation through the inclusion of all 
biexcited configurations. As can be seen from the molecular diagrams, bond order 
alternation is clearly marked both for even polyenes and for cations of odd 
polyenes. No firm conclusion about the geometry in the asymptotic case can be 
made on the basis of the bond order alternation of  the short polyenes. The close 
values of bond orders for both classes of polyenes however, give us reason to 
suppose identical or similar geometry when n -+ o% in both cases. 

Ratio (1) can be satisfied including electron correlation too (see the text below), 
only if an identical or very similar bond order alternation is presumed. 

3. Influence of  the Electron Correlation 

However, the presence of  an energy gap in the case of  even polyenes cannot be 
explained by means of the geometry factor alone. A review of the studies on even 
polyenes [10-20] shows that with these, as with all quasi-monodimensional 
systems with delocalized electrons, the electron correlation plays an important 
part in determining the energy gap. If  by A c o r r  we denote the factor determined by 
the electron correlation, then the width of  the energy gap is given by the expression : 

= A 2 AEoo x/  .... + Ag~om (17) 

The above equation, derived at first for polyenes only [12, 17], is valid for any 
arbitrary homonuclear systems [28, 29] with a closed shell. It was derived on 
condition that the electron charge q of  the atoms is equal to 1. This condition is not 
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fulfilled for the ions of odd polyenes, but it can be shown, however, that Eq. (17) 
is valid for them too. 

The effects of electron correlation can be taken into account by means of the 
extended Hartree-Fock method in the version of the alternant molecular orbitals 
(AMO) [-30-32]. The MO of an odd polyene (cation) with 2n + 1 AO: 

0 
d- -d . . . . . . .  d . . . . . . .  c . . . . . .  
1 2 3 # v 2 n + 1  

can be expressed as follows: 

bonding MO 

~ ,  * 0 0 0 

Ok = % %  + ~ % %  

antibonding MO 

0 0 0 

According to the AMO method the wave function of the polyene cation may be 
represented in the form: 

1 
-- ~ [ ip;m~or "~fl[  (18) 

where ~J~ and ~J~ are AMO with ~ (~) and fl($) spin: 

0 

~O; = sin O k ~ + cos O k ~ (19) 

0 

0 ~ = c o s 0  k ~ - s i n 0  ky. 

The vacant NBMO is not included in expression (18). 

The secular equations for AMO with c~ spin (the secular equations for AMO with 
fl spin are analogous and their solution for the given system leads to the same 
result) will take the form" 

sin O k ~ - E ; )  + c o s  0k ek F;  = 0 

o o (20) 
sin O k ~ Ckr + cos OkCk~(F~ - E ; )  = 0 

I n  P P P -  [25, 26] and Hubbard approximation [33] the matrix elements of the 
HF-operator in the unrestricted HF method are [ 2 8 ]  : 

F~ = fiuv, o-ea, fl (21) 
(# and v are neighbours) 

~ ~ ~ P (21a) 
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where 

~,, = 2 ~ b2usin 2 O k = 1/2 G - 
k 

Pau. = 1/2qu + 6 .  

0 

P ~  = 1/2 G +  6~ 

0 

P~, = 1/2 G -  6~ 

~ ' 2  Ck. COS 20 k = 1 /2q .  --  3 .  
k 

(22) 

Taking into consideration expressions (21) and (22), the secular equations (20) 
become (for simplicity the Coulomb integral of  the C atom e is assumed to be 0)" 

0 

sin Okdk,,(1/2q. 7 -- 6U7 --  E~)  + COS O k ~,, Ca~fi. ~ = 0 
v 

o (23) 
sin 0 k ~ bk.flu~ + COS OkG~(1/2G~; + 6~? --  E~)  = 0 

It 

where 7 is the one centre Coulomb integral between the 2pz AO of the C atom, 
qu(~) and G(~) are the selfconsistent values of the electron charges and the coefficients 
of MO. If sin O k = cos O k, then 6. = 6~ = 0 and the secular Eqs. (23) convert into 
the equations of  the conventional HF  method : 

0 
~k(1/2qu)~--ek)  + Y~ Ck~flu v = 0 

o (24) 
~,  Ckufl.v + Ck~(1/2q.7 -- ek) = 0 
lz 

In the above equations, the energies e k do not coincide with the energies determined 
by means of (2) or (7). They depend on the geometry of the polymethyn chain, if a 
bond order alternation is assumed, expressed by the resonance integrals fls and fla 
in expression (21). 

It follows from (23) and (24) that: 

sin 0 k ( 1 / 2 7  --  3 7  --  E~,) + cos 0 k ( G  --  1/2q.7) = 0 
(25) 

sin O k (e k - 1/27 ) + cos Ok(1/2G7 + 6~? --  E~)  = 0 

If  in (25) a summation is carried out over all #-, respectively v-, and the following 
notations are introduced: 

7 q. '  = 2nn q~ / - 2 n + 2  

1 
- ~ ,  6 .  

~  ' i  
6 = -  6~ = -  cos20 k 6 

n v n k n 

(26) 
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s 

the secular equations (25)take the form 

, __ * __ 
sin k(f  87 E ; ) + c o s 0  k(e k - f )  = 0  

r o o o (27) 
sin O k(e k - f )  + cosOk( f +  6 y - E ? , ) =  0 

The solution of the above secular equations leads to the following expression for 
the AMO energies (the same for AMO with ~ and/3 spin): 

. 0 0 

E ; , a = j ~ + f +  ~ - 6  
2 

where 

+ + 87 + (ek -- f )  (ek -- f )  

The minus 
AMO. 

(28)  

+ ;) 

sign relates to the nonbonding, and the plus sign to the antibonding 

For n >> 1, (see Eqs. (26)) 

n 

1 ~ cos 20 k 6=~k 
In Hiickel's approximation, according to Eqs. (8-13) 

0 

~u v 

Hence, for n >> 1" 
0 0 0 

(29) 

2 (32)  AE~ = 2\/6272 + e, 

where e, is the highest occupied MO. For ideal geometry (fis = fla = fl) the energy 
gap AEo~ = 262, i.e. it is determined by the electron correlation only. If  fls r fla 

f - f - + O ,  6 - 8 - - * 0 .  

These conditions are fulfilled not only for ideal geometry of the polymethyn chain, 
but also when bond length alternation is present (fls # fld). 

Under the above conditions, (28) becomes 

= 2 (30)  E~' ~ 1/27 + x/8272 + e k �9 

From (27) and (30) we obtain: 

cos 20 k - 87 (31) 
2 N / 6 2 y  2 -]- e k 

Eqs. (30) and (31) coincide with the equations for even polyenes [12, 17]. The 
energy gap in both cases is equal to : 
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then G = Ifid - fls[ and 

= = AE~ x/4~272 + 4(fis - fie) 2 @ .... + 

i.e. we obtain Eq. (17). 

However, in the case of cations of odd polyenes, the longest-wavelength transition 
is determined by the transition of an electron from the n'th MO to "the vacant 
NBMO (0, + 1) ; it will be equal to the halfwidth of the gap AEoo" opt(II) = 1/2AE~o(II) 
(see Fig. 2), hence, Eq. (1) is satisfied. 

For cations of odd polyenes one may expect an intensive transition with an energy 
to the gap, just as for even polyenes. 

In the asymptotic case, one may expect the same properties for both anions and 
cations of odd polyenes. The nonbinding NBMO (0,+ ~) of the anions is doubly 
occupied and the longest-wavelength transition will take place from the NBMO to 
the lowest antibonding MO. The treatment of cations of odd polyenes may be 
generalized for the anions too. In this case the wave function is expressed in the 
form: 

1 
�9 �9 O . f l O . +  1~0~+ 1ill (33)  

x/(2n + 2)! 

In expression (33) for NBMO (0,+1), sin 0 +  1 = cos 0,+ 1, i.e. the correlation 
correction to NBMO is equal to 0 (Eff:~ = G+I). For n >> 1 the matrix elements 
of the HF-operator [31, 32] are unchanged- thei r  correction is of the order 1/n 
[28]. For the AMO energies, respectively the energy gap, the same expressions are 
obtained [30-32] as in the case of cations. In contrast, the longest,wavelength 
transition will be determined by the transition of an electron from NBMO to the 
lowest antibonding AMO, i.e. the transition energy will also be equal to the half- 
width of the gap (Fig. 2). It follows from here that Eq. (1) is satisfied too. 

As in the case of cations, the similar bond order alternation of the even polyenes 
is a necessary condition for the fulfilment of Eq. (1). 

empty 

full 

empty 

_t_ 
full 

empty 

T 
�9 full" 

Fig. 2. Band structure and scheme 
of electron transitions corres- 
ponding to the longest-wave- 
length optical transition for even 
polyenes and ions of odd polyenes 
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The exact values of the ratios 

AEo~, opt(I)/2 E~o, opt(II) 

probably deflect a little from the ratio 2:1. This can easily be explained by a certain 
difference in the bond order alternation of the even and the ions of odd polyenes. 

4. Conclusion 

The problem of the contribution of the correlation (A .... ) and geometry (Ag~om) 
component of the energy gap, which is treated for even polyenes in papers [ 10-20], 
is not discussed here. A realistic, quantitative evaluation of the ratio A co~]A g~om in 
the framework of the above mentioned semiempirical approximations can be done 
if only we know the exact experimental bond order alternation in infinite polyenes 
(there are no such data), as well as the value of the ratio fls/fla. The detailed study 
of this problem is the subject of a separate research, and its results will be reported 
in a following communication. 
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